6.sınıf denklemlerle ilgili örnek problemler

12 11
Sponsorlu Bağlantılar

6.sınıf denklemlerle ilgili örnek problemler, çözümlü sorular ve cevapları

6.sınıf Birinci dereceden bir bilinmeyenli denklemler örnekler sorular

1)    12 x – 16 = 5 x + 12
2)    2 x – 5 = 4 x + 9
3)    2 x + 4 – 3 x = 6 x – 4 + 1
4)    2 x – 5 + 3 = x
5)    4 – 11 + 6 m + 5 = 0
6)    3 x + ( 8 x – 2 ) = 7 – 2 x + 4
7)   13 – ( x + 4 ) + 5 x = 0
8)   – ( x + 2 ) = 3 x
9)   5 – ( 2 x + 1 ) = – ( x – 3 )

Birinci dereceden bir bilinmeyenli denklemler ile ilgili örnekler ve sorular  bulunmaktadır
Konunun devamında denklemler ile ilgili 60 adet soru ve cevabı bulunmaktadır.

Dökümanı indir.

6.SINIF DENKLEMLER ÇÖZÜMLÜ SORULAR

    DENKLEMLER

 

  1)   x + 6 =13  ise   x=?         

          

      a)13           b)8          c)7          d)-6                                          

 

  2)  x – 3 = 2  ise   x=?

 

      a)3             b)5          c)-5        d)6       

 

  3)  3x + 5 = 14  ise  x=?

 

      a)-2           b)4           c)-3         d)3        

 

  4)   5x – 6 = 19  ise  x=?

 

     a)5           b)10          c)-5         d)0        

 

  5)   2x + 5 = 5   ise   x=?

 

       a)2          b)5             c)-2         d)0      

     

  6)   x + 5 = 3   ise   x=? 

 

       a)2          b)-2           c)1           d)3      

 

  7)   5 – x = 3    ise    x=?

 

       a)2         b)-2          c)0           d)8        

 

  8)   –9 – x = 10     ise  x=?

 

      a)1         b)19          c)0           d)-19     

 

 9)   –5 – 2x = 9     ise   x=?

 

       a)-2        b)-7          c)2            d)8       

 

 10)   2.(x -1) + x = 4    ise  x=?

 

       a)1          b)2          c)3            d)4             

 

 11)   3.(2x + 1) – 5 = 16  ise  x=?

 

        a)3         b)5          c)7            d)4         

 

 12)   3.(2x – 3) – 2.(1–3x) = 1  ise  x=?

 

        a)-1         b)1          c)2           d)-2       

 

 13)   2×-5+3x=4+7x+13   ise  x=?

 

        a)9          b)-5         c)13         d)-11    

 

 14)   5.(3-2x)=15  ise  x=?

 

        a)0          b)1           c)2           d)3         

 

 15)   2.(5x+3) + 8 = 34  ise  x=?

 

       a)-10       b)1          c)2           d)11      

  

 16)  3  eksiğinin  7 katı  63 eden sayı kaçtır?

 

       a) 15       b) 14       c)13         d)12

 

 17)  5(x – 2) = 3x – 4 ise x=?

 

        a)-2          b)4           c)-7         d)3      

 

 18  2x–1 = 107 ise x=?

 

        a)25         b)45         c)54        d)62        

DENKLEM SORULARININ ÇÖZÜMLERİ

 

 Cevap 1)  x + 6 = 13 ise bulmamız gereken bilinmeyen x olduğu için; onu yanlız 

      bırakmamız  gerekiyor. Bu nedenle yanındaki +6 eşitliğin diğer tarafına – 6

      olarak geçer ve denklemimiz;

 

   x = 13 – 6  haline gelir. Buradan x = 7 olarak bulunur.

 

 Cevap 2)  x – 3 = 2 denkleminde ise x’ in yanındaki –3 eşitliğin diğer tarafına +3

       olarak geçer.

 

   x = 2 + 3 olur ve buradan x = 5 olarak bulunur.

 

 Cevap 3)  3x + 5 = 14 ise, önce bilinmeyenimizin yanındaki +5’ i  diğer tarafa –5

     olarak geçiriyoruz.

 

  3x = 14 – 5  

  3x = 9 olarak bulunuyor. x’in başında bulunan 3 çarpanı ise eşitliğin diğer tarafındaki 

          9’un yanına bölen olarak geçer. Buradan;

  x = 9 / 3

  x = 3 olarak bulunur…

 

   UNUTMAYALIM ARKADAŞLAR!!!

   BİR SAYIYI VEYA HARFLİ İFADEYİ EŞİTLİKTE YER DEĞİŞTİRİRKEN; MUTLAKA

   İŞLEM ÖZELLİĞİNİ DE DEĞİŞTİRİCEKSİNİZ… YANİ; TOPLANAN SAYI EŞİTLİĞİN

   DİĞER TARAFINA ÇIKARILAN OLARAK, ÇIKARILAN SAYI TOPLANAN OLARAK, 

   ÇARPIM  DURUMUNDA OLAN SAYI DİĞER TARAFA BÖLEN OLARAK, BÖLEN

   SAYI İSE DİĞER  TARAFA ÇARPAN OLARAK GEÇER.. KISACA

   Toplama —- Çıkarma

   Çıkarma —- Toplama

   Çarpma —- Bölme

   Bölme —- Çarpma   şeklinde yer değişikliği yapılır…

 

   Cevap 4) 5x – 6 = 19  ise öncelikle bilinmeyen sayımızın yanındaki –6’ diğer

      tarafa atıyoruz.

               5x = 19 + 6 yapıyor ve toplayınca

               5x = 25   oluyor. X’ in başındaki 5 çarpanı da diğer taraftaki sayının yanına

                               bölen olarak  geçiyor. Buradan;

             x = 25 / 5  ve x =5 olarak bulunuyor.

 

  Cevap 5)  2x + 5 = 5 ise +5 i diğer tarafa –5 olarak geçirdiğimizde;

                    2x = 5 – 5 ve

                    2x = 0 bulunuyor…2 çarpanı da bölen geçiyor..

                      x = 0 / 2

                      x = 0

 

 

  Cevap 6) x + 5 = 3   ise +5 diğer tarafa –5 geçer ve;

                    x = 3 – 5

                    x = – 2 olarak bulunur.

 

 

  Cevap 7)    5 – x  = 3    ise bilinmeyenimizin yanındaki +5 diğer tarafa geçer

                  – x = 3 – 5 ve buradan;

                  – x = – 2 olur. Fakat bilinmeyenimizin pozitif olması gerektiğinden;

        Her iki tarafı – ile çarparız ve sonuçta;

                    x = +2 olur

 

 

  Cevap 8)   –9 –x = 10  ise  –9 diğer tarafa +9 geçer;

                   –x = 10 + 9 olur. Ve buradan;

                   –x = 19 olur. x’in pozitif olması gerektiğinden

                     x = –19 olur.

 

  Cevap 9)   –5 –2x = 9  ise –5 diğer tarafa;

                     –2x = 9 + 5

                     –2x = 14 olur. –2 çarpanı diğer tarafa bölen olarak geçer ve;

                       x = 14 /–2

                       x = –7 olarak bulunur.

 

 

 

  Cevap 10)  2.(x – 1) + x = 4   denkleminde öncelikle parantezin açılması gerekir.

                      Bu nedenle 2 ile parantezin içindeki x ve –1 sayılarını çarparız. Çarpınca;

                      2x – 2 + x = 4 olur. eşitliğimizin sol tarafında iki tane x’li bilinmeyen var.

                     Önce bunları toplayalım;

           3x – 2 = 4    sonra da –2’yi diğer tarafa geçirelim…

           3x = 4 + 2

           3x = 6   ve 3 çarpanını da bölen olarak geçirirsek;

             x = 6 / 3

             x = 2 olarak bulunur.

 

 

 

 Cevap 11)   3.(2x + 1)  – 5 = 16   denkleminde yine ilk olarak parantezleri açarız.

 

          6x + 3 – 5 = 16     sonra  sayılar arasında işlem yaparız.

          6x – 2 = 16      sonra –2’yi diğer tarafa geçirelim

          6x = 16 + 2

          6x = 18  ve en son 6 çarpanı diğer tarafa bölen olarak geçer ve;

            x = 18 / 6

            x = 3  olarak bulunur.

 

 

 Cevap 12)   3.(2x – 3) –2.(1 – 3x)  = 1    denkleminde ise yine ilk önce her iki

  parantezi de açıyoruz. Açarken parantezin içindeki her iki ifadeyle de çarpmayı

  unutmayın…

 

               6x – 9 –2 + 6x = 1    daha sonra x’li ifadeleri kendi arasında, sayıları da kendi

                                                  arasında işleme sokuyoruz…

 

     12x – 11 = 1     sonra –11’i diğer tarafa +11 olarak geçiriyoruz.

     12x = 1 + 11

     12x = 12    son olarak 12 çarpanını diğer tarafa bölen olarak geçiriyoruz..

         x = 12 / 12

         x = 1   oluyor.

 

 

  Cevap 13 )   2x – 5 + 3x = 4 + 7x + 13     denkleminde önce her iki tarafında aynı olan

                        ifadeleri birbiriyle topluyoruz.

 

       5x – 5 = 7x + 17 oluyor. Eşitliğin her iki tarafında da x bilinmeyeni olduğundan

       bunları  tek bir tarafta toplamamız gerekiyor.. Yer değişikliği yaparken

       küçük olan ifadeyi büyüğün yanına geçiricez.. Sol taraftaki 5x,

       sağ taraftaki 7x’in yanına geçecektir. İşaret değiştirerek tabi;

    – 5 = 7x – 5x +17           (7x ten 5x i çıkarıyoruz)

    – 5 = 2x + 17    şimdi de bilinmeyenimizin yanındaki +17’yi diğer tarafa –17 olarak

       geçiriyoruz.

    – 5 – 17 = 2x

   – 22 = 2x     sonrada x’in başındaki 2 çarpanı bölen olarak geçiyor

   – 22 / 2 = x

   –11 = x    olarak bulunuyor.

 

 

  Cevap 14)   5.(3 – 2x) = 15     önce parantez açılır…

                 15 – 10x = 15     sonra 15 diğer tarafa –15 olarak geçer.

                    –10x = 15 – 15

                    –10x = 0

                             x = 0 / –10

                             x = 0    olur.

 

 

  Cevap 15)   2.(5x + 3) + 8 = 34      önce parantez açalım..

                      10x + 6 + 8 = 34      sora sayıları toplayalım

                      10x + 14 = 34      sonra +14 diğer tarafa geçsin..

                      10x = 34 – 14

                      10x = 20      x’in başındaki 10 çarpanı bölen geçer;

                          x = 20/10

                          x = 2 olarak bulunur.

 

 

  Cevap 16)  3 eksiğinin 7 katı 63 eden sayı kaçtır demek; hangi sayıdan 3’ü çıkarır

   7 ile çarparsak 63 eder anlamına geliyor. Biz o sayıyı bilmediğimiz için 3 çıkarıp 7 ile

    çarpamayız…

   AMAA işlemi tersten yaparsak; yani sonuç olan 63’ü 7 ile bölersek

   (çarpmanın tersi bölmedir.)

   63 / 7 = 9 olur.. ve daha sonra 3 çıkarmak yerine 3 eklersek

    9 + 3 = 12     bu sayıyı bulmuş oluruz..   cevap: 12

 

 

   Cevap 17)   5.(x – 2) = 3x – 4     yine önce parantez açılır..

       5x – 10 = 3x – 4    sonra küçük olan 3x, 5x’in yanına gelir.

       5x – 3x – 10 = – 4

       2x – 10 = – 4    sonra –10 yer değiştirir.

       2x = – 4 + 10

       2x = 6      sonra 2 çarpanı bölen olarak geçer

         x = 6/2

         x = 3 olarak bulunur.

 

 

   Cevap 18)    2x – 1 = 107   en kolay soru sona bırakılır mı kardeşim.. Nasıl böyle bir

     hata yapmışız. Bu soruda sizlere kalsın arkadaşlar.. rahatlıkla yaparsınız. Cevap 54

Denklemler ile ilgili matematik soruları 6.sınıf

Birinci dereceden bir
bilinmeyenli denklemler

ve a 0 olmak üzere ax +b=0 şeklindeki eşitliklere birinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan x sayısına denklemin kökü, bu kökün oluşturduğu kümeye çözüm kümesi denir.

ax+b=0 ise sayısı denklemin köküdür.

Çözüm kümesi:

Ç= olur.

Örnekler:

1) 6x +12 =0 denkemini çözüm kümesini bulunuz.

Çözüm:

6x+12=0  6x= -12
x= x=-2 Ç= olur.
2)-5x + 6 + x = 1 –x + 8 denkleminin çözüm kümesini bulunuz.

Çözüm:

-5x+ 6+ x =1 –x +8
-4x + 6 = -x + 9
-4x +x = 9-6
-3x=3
x= -1 Ç=
3) denkleminin çözüm kümesini bulunuz.
Çöm: denklemde paydası eşitlenir:

4) x-{2x-[x+1-(3×-5)]} = 3 ise x kaçtır?
Çözüm:

[x+1-3x+5]
[-2x+6]
{2x+2×-6}
x-4x+6 = 3
-3x =  x= 1 Sonuç: 1

5) 9(1-2x) – 5(2-5x) = 20 denkleminin çözüm kümesi nedir?
Çözüm:

9(1-2x) – 5(2-5x) = 20
9-18×-10+25x = 20
7×-1= 20
7x = 21
x = 3
Sonuç: 3

6) x 2 x 1
—– + —– = —– + 1—– denkleminin çözüm kümesi nedir?
3 5 5 3

Çözüm:
x 2 x 4
—– + —– = —– + —–
3 5 5 3
(5) (3) (3) (5)

5x+6 3x+20
——- = ——- = 5x + 6 = 3x+20
15 15

2x = 14  x = 7 Sonuç: 7

7) Kendisine katı eklendiğinde 72 eden sayı kaçtır?

Çözüm:

=
2x+5=1 ise “x” kaçtır?

Çözüm:
2x = -4
x = -2  Sonuç = {-2}

9) Toplamları 77 olan iki sayıdan birinin 3 katı, aynı sayının 4 katıyla toplamına eşittir.Bu Sayıların Küçük Olanı Kaçtır?

Çözüm:

3x+4x = 77
7x = 77
x = 7
3x = 33 Sonuç = {33}

10) Bu denklemdeki x’ in değerini bulunuz.
Çözüm:

x = 5 Sonuç = {5}

11) “x” in değerini bulunuz.
Çözüm:

– 45 = 5×-35
5x = -10
x = -2

Sonuç = {-2}

12) “x” in değerini bulunuz.

Çözüm:

3×-5 = -20
3x = -15
x = -5 Sonuç = {-5}

13) denklemini ve koşuluyla x’i bulunuz.
Çözüm

x=-1 fakat (x 1 ve x koşulundan dolayı

Ç=Ǿdir

14) için x ’in değeri kaçtır?
Çözüm
 x=3 (x 3 koşulundan dolayı )

Ç=Ǿdir

Birinci Dereceden İki
Bilinmeyenli Denklemler

olmak üzere açık önermesine birinci dereceden iki bilinmeyenli denklem denir.
denkleminde x ’e verilebilecek her değer için bir y değeri bulunabilir. Bulunan (x,y) ikililerinden her birine denklemin bir çözümü denir. Çözüm kümesi sonsuz elamanlıdır.

Örnekler:

1) denklemini çözüm kümesini bulup düzlemde göster.

x=0 için y=2.0-1(0,-1)
x=1 için y=2.1-1(1,1)
x=2 için y=2.2-1(2,3)
x=3 için y=2.3-1(3,5)
x için y=2×-1(y 2x –1)

Ali, Ayşe ve Mehmet 27700 lirayı paylaşacaklardır. Ali, Mehmet’ten 1000 lira fazla, Ayşe, de Ali’den 1300 lira eksik alacaktır. Buna göre, Mehmet’in payı kaç lira olur?
A) 8000 B) 9000
C) 10000 D) 11000
(1990— FL)

Çözüm

Mehmet:x
Ali :x+1000
Ayşe x+1000)-1300
+

Toplam 3x + 700 = 27700

3x = 27000

x = 9000 olur.

Cevap B

Örnek-2

“İki sayıdan biri diğerinden 8 büyüktür. Büyük sayının 2 katı ile küçük sayının 4 katı toplamı 184 ettiğine göre büyük sayı kaçtır?” Bu problemin çözümünü veren denklem aşağıdakilerden hangisidir?

A)x+2(x+8)=184
B)2x+4(x-8)=184
C)2x+4(x+8)=184
D) 4x+2(x-8)= 184
(1992— FL)

Çözüm
küçük sayı Büyük sayı
x-8 x

Büyük sayının 2 katı > 2x
Küçük sayının 4 katı > 4.(x- dir.
Toplamları; 2x + 4.(x – = 184 olur.

Cevap B
Örnek-3
Bir öğrencinin 140000 lirası vardır. Bu öğrenci 4 kitap, 6 defter alırsa 20000 liraya ihtiyacı olacaktır. Eğer 4 defter, 6 kitap alırsa 20000 lirası artacaktır. Bir defter ile bir ki¬tabın toplam fiyatı kaç liradır?
A) 12000 B) 24000 C) 28000 D) 36000
(1992— FL)

Çözüm

4 kitap + 6 defter=160.000 lira ve
6 kitap + 4 defter = 120.000 lira
+

10 kitap + 10 defter 280.000
1 kitap + 1 defter = 28.000 lira olur.
Cevap C

Örnek-4
3 1
Ali’nin parasının — i, Ayşe’nin parasının — üne eşittir. Ay¬şe, Ali’ye 3000 lira verseydi
5 3
paraları eşit olacaktı. Ali’nin parası kaç liradır?

A) 5500 B) 7500 0)15000 D) 30000
(1992— FL)

Çözüm

Ali Ayşe
a b lira olsun.
3a b 9a
— = — b= — tir
5 3 5
a + 3000 = b-3000
9a
a + 6000 = ——
5

5a + 30000 = 9a

30000 = 4a

a = 7500 lira olur. Cevap B

Örnek-5
1 1
Bir bisikletli gideceği yolun önce — ünü, sonra — ünü,
1 3 4
daha sonra ise kalan yolun — ini gidiyor. Bisikletli top-
5
1am 24 km yol aldığına göre, gitmesi gereken kaç km yolu kalmıştır?
A)8 B)10 C)12 D)16

(1993-FL)

Çözüm
1 1 4+3 7
Önce — + — = —— = ——
3 4 12 12

1 12 7 5
Sonra Kalanın — ini, yani — – — = —
5 12 12 12

5 1 1
— x — = —sini daha gider.
12 5 12
7 1 8 2
Toplam gittiği yol —+— = — = — ü olur.
12 12 12 3

2 3 2 1
— ü 24 km ise,kalan yol — – — = — tür.
3 3 3 3

2
— ü 24 km ise 24:2=12 km olur.
3
Cevap C

Örnek-6

Bir köylü kilogram; 95000 liradan 30 kg elma satmıştır. Eline geçen paranın 1 275 000 lirası ile kumaş, kalanı ile de zeytinyağı almıştır. Zeytinyağının bir litresi kaç Ii¬radır?

Bu problemin çözülebilmesi için, aşağıdaki bilgiler¬den hangisinin verilmesi gerekir?

A) Elmalardan kaç lira kazanıldığı.

B) Kaç metre kumaş alındığı.

C) Zeytinyağına kaç lira verildiği.

D) Kaç litre zeytinyağı alındığı.

(1998-ÖO)

Çözüm

30 kg elma > 30 x 95 000 = 2 850 000 lira

2 850 000 – 1 275 000 = 1 575 000 lira kalan para
Köylünün zeytinyağına verdiği toplam para bulunmuş¬tur. Fakat zeytinyağının bir litresinin fiyatının bulunabil¬mesi için, kaç litre zeytinyağı alındığının bilinmesi gerek¬lidir.

Cevap D

EŞİTLİK VE DENKLEM

Terazideki denge durumu, eşitliğin bir modelidir.

Eşit işareti (=) ve bilinmeyen içeren sayı cümlesine denklem denir. Diğer bir deyişle bilinmeyen içeren eşitliklerdir.Denklemi doğru yapan değişkenin değerine o denklemin çözümü denir.Bu doğru değeri bulma işlemine de denklemi çözme denir.

Denklemleri çözerken aynı sayının zıt işaretlisi yan yana gelirse birbirini götürür,yani sıfır olur. (-3+3=0)

Örnek: x+4=7 denkleminin çözümünü bulunuz.

x+4=7 eşitliğin her iki tarafından 4 çıkartırız.

x+4-4=7-4 işlemleri yaparsak x=3 olur.

Örnek: x-7=5 denkleminin çözümünü bulunuz.

x-7=5 eşitliğin her iki tarafına 7 ekleriz.

x-7+7=5+7 işlemleri yaparsak x=12 olur.

Örnek: 1+3k=25 denkleminin çözümünü bulunuz.

1+3k=25 eşitliğin her iki tarafından 1 çıkartırız.

1+3k-1=25-1 işlemleri yaparsak 3k=24 olur.

3k=24 eşitliğin her iki tarafını 1/3 ile çarparız.

1/3.3k=24.1/3 işlemleri yaparsak k=8 olur.

Örnek: (3a)/5=2 denkleminin çözümünü bulunuz.

(3a)/5=2 eşitliğin her iki tarafını 5 ile çarparız.

5.(3a)/5=2.5 işlemleri yaparsak 3a=10 olur.

3a=10 eşitliğin her iki tarafını 1/3 ile çarparız.

1/3.3a=10.1/3 işlemleri yaparsak

6.sınıf denklemlerle ilgili örnek problkemler

denklem çözme alıştırması

10x+8=6×-11
7×-5= 4x+8
6x+4=3×-7
7x+5=4×-8
13x+11=10x+14
6×-4= 3x+7
11x+9=8x+12
5×-3= 2×-6
7×-5= 4x+8
14x+12=11x+15
6x+4=3x+7
8×-6= 10×-9
9×-7= 6x+10
9x+7=6×-10
5×-3= 2×-6
12×-10=9×-13
14x+12=11x+15
6x+4=3×-7
13x+11=10x+14
11×-9=8x+12
4x+5=6×-8
2x+3=4x+6
7x+8=9×-11
3×-4= 5×-7
6x+7=8x+10
2×-2= 3x+5
10×-11=12x -14
6×-7= 8×-10
10x+11=12x+14
9×-10 =11x- 13
5×-6= 7×-9
8x+9=10x+12
5x+6=7×-9
3x+4=5x+7
8×-9= 10×-12
14+12=11×-15
13x+11=10x+14
13x+11=10x+14
12x+10=9x+13
10x+8=7×-11
10×-8 =7x+11
7x+5=4x+8
11x+12=18x+15
5x+6=12x+9
4×-5= 11x+8
11x+12=18x+15
10x+11=17x+14
5x+6=12×-9
11×-12=18x -15
3x+4=10×-7
Sponsorlu Bağlantılar

11 Yorum --> "6.sınıf denklemlerle ilgili örnek problemler"

  1. 1) 12 x – 16 = 5 x + 12
    2) 2 x – 5 = 4 x + 9
    3) 2 x + 4 – 3 x = 6 x – 4 + 1
    4) 2 x – 5 + 3 = x
    5) 4 – 11 + 6 m + 5 = 0
    6) 3 x + ( 8 x – 2 ) = 7 – 2 x + 4
    7) 13 – ( x + 4 ) + 5 x = 0
    8) – ( x + 2 ) = 3 x
    9) 5 – ( 2 x + 1 ) = – ( x – 3 )

Yorum Yaz

E-posta hesabınız yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Şu HTML etiketlerini ve özelliklerini kullanabilirsiniz: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Current ye@r *