Birinci dereceden bir bilinmeyenli denklemler ilgili çözümlü örnekler

Sponsorlu Bağlantılar

Birinci dereceden bir bilinmeyenli denklemler ilgili çözümlü örnekler

3x – 4 = 23 denkleminde, bilinmeyen “x” tir. x in kuvveti “1″ (Kuvveti 1 olan ifadelerde kuvvetin yazılmadığını hatırlayınız.) olduğundan, bu denklem, birinci dereceden bir bilinmeyenli bir denklemdir.
Bunun gibi;
y + 5 = 8 ve 4k + 6 = 26 denklemleri de birinci dereceden bir bilinmeyenli birer denklemdir. Bu denklemlerin bilinmeyenleri, sıra ile y ve k dir.
Genel olarak; a, b, c Î R ve a ¹ 0 olmak üzere,
ax + b = c şeklindeki denklemlere, birinci dereceden bir bilinmeyenli denk*lem denir. Denklemi doğru yapan değerlerin oluşturduğu kümeye, denklemin çözüm kümesi denir ve Ç ile gösterilir.

Örnek
x – 13 = 23 denklemini gerçek sayılar kümesinde çözelim ve çözüm kümesi*ni bulalım:
x – 13 = 32 denkleminde (-13) ün toplama işlemine göre tersi olan (+13) ü eşitliğin her iki yanına ekleyelim:
x – 13 + (+13) = 23 + (+13)
0
x = + 39 olur. Çözüm kümesini Ç ile göstermiştik.
Ç = {+39} bulunur.
x = + 39 sayısının x -13 = 23 denklemini sağlayıp sağlamadığını kontrol ede*lim:
x = + 39 için; x- 13 = 23
39-13 = 23
23 = 23 olduğundan, denklemin çözümü doğrudur.

Örnek
x + 8 = 19 denklemini çözelim ve çözüm kümesini bulalım:
x + 8 = 19 denkleminde, (+ 8) in toplama işlemine göre tersi olan (-8) i denk*lemin her iki yanına ekleyelim:
x + 8= 19
x + 8 + (-8) = 19 + (-8)
0
x = 11 olur. Ç = {+ 11} bulunur.
Bir denklemde eşitliğin her iki tarafına aynı gerçek sayı eklenirse, eşitlik bozul*maz. Yani x = y ise, x + k = y + k olur.

Örnek
3x = 54 denklemini çözelim ve çözüm kümesini bulalım:
3x = 54 denkleminde, 3 ün çarpma işlemine göre tersi olan ile denklemin her iki yanını çarpalım:
3x = 54

x = 18 olur.
Ç = {18} bulunur.
Bir denklemde eşitliğin her iki tarafı sıfırdan farklı bir gerçek sayı ile çarpılırsa, eşitlik bozulmaz. Yani k ¹ 0 için,
x = y ise k . x = k . y olur.
4x +7 = 67 ve 3x – 8 = 55 denklemlerinin çözüm kümelerini bulalım:

4x + 7 = 67 3x – 8 = 55
4x + 7 + (-7) = 67 + (-7) 3x – 8 + (+8) = 55 + (+8)
4x = 60 3x = 63

x = 15 olur. x = 21 olur.
Ç = {+15} bulunur. Ç = {+21} bulunur.

Yukarıdaki denklemlerin çözümleri, aşağıdaki gibi de yapabiliriz. İnceleyiniz.
4x + 7 = 67 3x – 8 = 55
4x = 67 – 7 3x = 55 + 8
4x = 60 3x = 63
x = x =
x = 15 olur. Ç = {+15} bulunur. x = 21 olur. Ç = {+21} bulunur.

Örnek
4(x+5) + 12 = 152 denkleminin çözüm kümesini bulalım:
4(x+5) + 12 = 152
4x + 20 + 12 = 152 (çarpma işleminin toplama işlemi üzerine dağılma özeliğinden)
4x + 32 = 152
4x + 32 + (-32) = 152 + (-32)
4x = 120

x = 30 olur.
Ç = {+30} bulunur.

Örnek
3x – 8 = 16 denkleminin çözüm kümesini R de bulalım ve sağlamasını yapalım:
3x – 8 = 16 Sağlama:
3x – 8 + (+8) = 16 + 8 x = 8 için; 3 . 8 – 8 = 16
24 – 8 = 16
x = 8 olur. 16 = 16 olduğundan,
denklemin çözümü doğrudur.
Ç = {8} bulunur.

Problemlerin Denklem Kurarak Çözümü
Problem: Özer’in yaşının 5 eksiğinin 4 katı 44 tür. Özer kaç yaşındır?
Çözüm:
Özer’in yaşı x olsun.
Verileri matematiksel ifade ile (denklem olarak) yazalım:
Özer’in yaşının 5 eksiği, x – 5 olur. Bunun 4 katı, 4(x-5) biçimde yazılır. Denklem, 4(x-5) = 44 olur.
4(x-5) = 44
4x – 20 = 44
4x – 20 + (+20) = 44 + (+20)

Ç = {16} bulunur.
Özer’in yaşı 16 dır.

Problem: Koray, Elif’ten 35 yaş büyüktür. Koray ile Elif’in yaşları toplamı 47 olduğuna göre, her biri kaç yaşındadır?
Çözüm
Elif’in yaşı x dersek; Koray’ın yaşı, x + 35 olur.
Elif’in Yaşı Koray’ın Yaşı Yaşları Toplamı
x x + 35 47
Problemin denklemi, x + x + 35 = 47 ve 2x + 35 = 47 olur.
Şimdi de denklemi çözelim:
2x + 35 + (-35) = 47 + (-35)

x = 6 olur.
O halde; Elif’in yaşında, Koray ise, 6 + 35 = 41 yaşındadır.

Problem: Bir sayının 8 katının 5 fazlası 101 dir. Bu sayı kaçtır?
Çözüm
Bilinmeyen Sayı 8 Katı 8 Katının 5 Fazlası
x 8x 8x + 5
Denklemi kurarak çözüm kümesini bulalım:
8x + 5 = 101 denklemi kurulur.
8x + 5 = 101
8x + 5 + (-5) = 101 + (-5)
x = 12 dir. Sayı 12 olarak bulunur.
Sağlama
x = 12 için, 8x + 5 = 101
8 . 12 + 5 = 101
96 + 5 = 101 101 = 101 olur. Öyle ise, denklemin çözümü doğrudur.
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER
Eşitsizlik Kavramı
(-14) ve (+5) tam sayılarını karşılaştıralım:
O halde, bu iki sayı arasındaki küçüklük veya büyüklük ilişkisini,
-14 < +5 veya +5 > -14 şeklinde yazarız.
a. 7 ile 5 i karşılaştıralım: ç. 0 ile 8 i karşılaştıralım:
5 < 7 veya 7 > 5 olur. 0 < 8 veya 8 > 0 olur.

b. -4 ile -16’yı karşılaştıralım: d. -1 ile 0 ı karşılaştıralım:
-4 > -16 veya -16 < -4 olur. -1 < 0 veya 0 > -1 olur.

c. 22 ile 53 ü karşılaştıralım: e. -7 ile +1 ı karşılaştıralım:
22 < 53 veya 53 > 22 olur. -7 < +1 veya +1 > -7 olur.

Genel olarak; a, b Î R olmak üzere,
a – b > 0 ise a > b olur.
a – b < 0 ise a < b olur.

Örnek
a = +37, b = – 28 tam sayılarını karşılaştıralım:
(+37) – (-28) = (+37) + (+38) = (+75) olur. (+75) > 0 ve a – b > 0 dır.
O halde, (+37) > -28 dir.

Örnek
a = +9, b = +17 tam sayılarını karşılaştıralım:
(+9) – (+17) = (+9) + (-17) = (-6) olur. (-6) < 0 ve a – b < 0 dır.
O halde, +9 < +17 olur.

Aşağıdaki önermeleri inceleyiniz.
a) 5x – 3 > 22 c) 2x + 6 < 0 d) x + 9 > 0 f) x – 2 ³ 0
b) 2x – 7 > 0 ç) 6x – 5 < 19 e) 5(x + 4) < 0 f) 3x + 1 £ 7
Yukarıdaki önermelerin her biri, birinci dereceden bir bilinmeyenli eşitsizliktir.

Örnek
8x + 9 > 0, 8x + 9 < 0, 8x + 9 ³ 0 veya 8x + 9 £ 0 ifadelerinin her biri, birinci dereceden bir bilinmeyenli bir eşitsizliktir.

Eşitsizliklerin Çözümü
x Î R için x > 4 eşitsizliğin çözüm kümesini yazalım ve sayı doğrusunda gösterelim:
Ç = {+4 ten büyük gerçek sayılar} dır.

Örnek
x Î R için x < 5 eşitsizliğin çözüm kümesini yazalım ve sayı doğrusunda gösterelim:
Ç = {+5 ten büyük gerçek sayılar} dır.

Örnek
x Î R için x ³ -5 eşitsizliğin çözüm kümesini yazalım ve sayı doğrusunda gösterelim:
Ç = {-5 ve -5 ten büyük gerçek sayılar} dır.

Örnek
x Î R için x £ -2 eşitsizliğin çözüm kümesini yazalım ve sayı doğrusunda gösterelim:
Ç = {-2 ve -2 ten büyük gerçek sayılar} dır.

Örnek
x Î R olmak üzere, 3x – 4 = 11 denklemi ile 3x – 4 > 11 eşitsizliğinin çözüm kümelerini bulup, aralarındaki farklılığı sayı doğrusu üzerinde gösterelim:
3x – 4 = 11 denklemini çözelim:
3x – 4 + (+4) = 11 + (+4)
.3x = 15.
x = 5 ve Ç = {+5} olur.

Şimdi de 3x – 4 > 11 eşitsizliği çözelim:
3x – 4 > 11
3x – 4 + (+4) = 11 + (+4)
.3x = 15.
x > +5 ve Ç = {+5 ten büyük gerçek sayılar} dır.

Örnek
x Î R olmak üzere, x < +5, x > 2, x ³ -1, x < -4, x > -3, x £ +3 eşitsizliklerini doğru yapan değerleri sayı doğrusu üzerinde gösterelim ve çözüm kümelerini gerçek sayılarda sembol kullanarak yazalım:

x < +5 ve
Ç = {+5 ten küçük gerçek sayılar} dır.

x > 2 ve
Ç = {+2 ten büyük gerçek sayılar} dır.

x ³ -1 ve
Ç = {-1 ve -1 den büyük gerçek sayılar} dır.

x < -4 ve
Ç = {-4 ten küçük reel sayılar} dır.

x > -3 ve
Ç = {-3 ten büyük gerçek sayılar} dır.

x £ +3 ve
Ç = {+3 ve +3 ten küçük gerçek sayılar} dır.

Örnek
x Î R olmak üzere, x < -3, x > +3 eşitsizliklerinin çözüm kümesini aynı sayı doğrusu üzerinde gösterelim:

x < -3 eşitsizliğinin çözüm kümesi, Ç= {-3 ten küçük gerçek sayılar}dır.
x < +3 eşitsizliğinin çözüm kümesi, Ç= {+3 ten büyük gerçek sayılar}dır.

Örnek
x Î R olmak üzere, x £ -4, x ³ +4 eşitsizliklerinin çözüm kümesini aynı sayı doğrusu üzerinde gösterelim:

x £ -4 eşitsizliğinin çözüm kümesi, Ç= {-4 ve -4’ten küçük gerçek sayılar}dır.
x ³ +4 eşitsizliğinin çözüm kümesi, Ç= {+4 ve +4’ten büyük gerçek sayılar}dır.

Örnek
Aşağıdaki sayı doğrusunda çözüm kümesi gösterilen eşitsizliği sembol kullanarak yazalım:

Aşağıdaki işlemleri inceleyiniz.
-5 < +4 eşitsizliğin her iki yanına, (+8) i ekleyelim.
-5 < +4
(-5) + (+8) < (+4) + (+8)
+3 < +12 dir.
+3 > -7 eşitsizliğinin her iki yanına, (-9) u ekleyelim:
+3 > -7
(+3) + (-9) > (-7) + (-9)
-6 > -16 dır.
+25 > -12 eşitsizliğinin her iki yanına, (+4) ü ekleyelim:
+25 > -12
(+25) + (+4) > (-12) + (+4)
+29 > -8 dir.
-6 < -2 eşitsizliğinin her iki yanına, (-5) i ekleyelim:
-6 < -2
(-6) + (-5) < (-2) + (-5)
-13 < -7 dir.

Aşağıdaki işlemleri inceleyiniz.
-7 < -4 eşitsizliğin her iki yanını, (+5) ile çarpalım:
-7 < -4
(-7) x (+5) < (-4) x (+5)
-35 < -20 dir.
+6 > -5 eşitsizliğin her iki yanını, (+3) ile çarpalım:
+6 > -5
(+6) x (+3) > (-5) x (+3)
+18 > -15 dir.
(+7) < (+11) eşitsizliğin her iki yanını, (+8) ile çarpalım:
(+7) < (+11)
(+7) x (+8) < (+11) x (+8)
+56 < +88 dir.

Aşağıdaki işlemleri inceleyiniz.
+15 > +12 eşitsizliğin her iki yanını, (-4) ile çarpalım:
+15 > +12
(+15) x (-4) < (+12) x (-4)
-60 < -48 dir.
-9 < -3 eşitsizliğin her iki yanını, (-5) ile çarpalım:
-9 < -3
(-9) x (-5) > (-3) x (-5)
+45 > +15 dir.

Aşağıdaki işlemleri inceleyiniz.
+12 > +4 eşitsizliğin her iki yanını, (+4) ile bölelim:
+12 > +4
(+12) : (+4) > (+4) : (+4)
+3 > +1 dir.
-36 < -9 eşitsizliğin her iki yanını, (+9) ile bölelim:
-36 < -9
(-36) : (+9) < (-9) : (+9)
-4 < -1 dir.

Aşağıdaki işlemleri inceleyiniz.
-24 < -6 eşitsizliğin her iki yanını, (-6) ile bölelim:
-24 < -6
(-24) : (-6) > (-6) : (-6)
+4 > +1 dir.
+48 > +16 eşitsizliğin her iki yanını, (-16) ile bölelim:
+48 > +16
(+48) : (-16) < (+16) : (-16)
-3 < -1 dir.
Örnek
x – 4 < 3 eşitsizliğinin kümesini bulalım ve sayı doğrusu üzerinde gösterelim:
x – 4 < 3
x – 4 + (+4) < 3 + (+4)
x < +7 ve Ç = {+7 den küçük gerçek sayılar} dır.

Örnek
4x – 16 < +40 eşitsizliğinin kümesini bulalım ve sayı doğrusu üzerinde gösterelim:
4x – 16 < +40
4x – 16 + (+16) < (+40) + (+16)
.4x < (+56).
x < +14 ve Ç = {+14 ten küçük gerçek sayılar} dır.

Örnek
3x – 4 > 11 eşitsizliğinin kümesini bulalım ve sayı doğrusu üzerinde gösterelim:
3x – 4 > 11
3x – 4 + (+4) > 11 + (+4)
.3x > (+15).
x > +5 ve Ç = {+5 ten büyük gerçek sayılar} dır.

Birinci dereceden bir bilinmeyenli denklemler; Örnek Çözümler

  • “2x + 5 = -3″ denkleminin çözüm kümesini bulalım;
  1. 2x + 5 = -3
  2. 2x = -3 -5
  3. 2x = -8
  4. (2x/2) = (-8/2)
  5. x = “-4″ → Ç={-4} olur.
  • 7x + 9 = 2(x + 2) denkleminin çözüm kümesini bulalım;
  1. 7x + 9 = 2x + 4
  2. 7x – 2x = +4 -9
  3. 5x = -5
  4. (5x/5) = (-5/5)
  5. x = “-1″→ Ç={-1} olur.
  • 3x – 7 = 11 denkleminin çözüm kümesini bulalım;
  1. 3x – 7 = 11
  2. 3x = 11 + 7
  3. 3x = 18
  4. (3x/3) = (18/3)
  5. x = “6″ → Ç={6} olur.

Hayatımızda Birinci Dereceden Bir Bilinmeyenli Denklemlerin İşlevi

Birinci dereceden bir bilinmeyenli denklemler problemleri ile hayatımızda bu denklemler, önemli bir yer tutar. Örneğin; dengede olan bir terazinin diğer kefesindeki ağırlığı vs. birinci dereceden bir bilinmeyenli denklemler ile bulabiliriz. Öte yandan birinci dereceden bir bilinmeyenli denklemler problemleri ile, matematikde de önemli yer tutarlar. Örneğin;

  • “Üç katının 5 fazlası 11 olan sayı kaçtır?” probleminde ilk önce denklem diline çevirmek önemlidir. Çözümü;
  1. 3x + 5 = 11
  2. 3x = 11 – 5
  3. 3x = 6
  4. x ={2} olur.

Günlük hayattan bir örnek problem de verebiliriz;

  • “Bir sınıftaki öğrenciler 2′şer oturunca 10 öğrenci ayakta kalıyor. 3′er olarak oturunca 3 sıra boş kalıyor. Buna göre sınıf mevcudu kaçtır?” probleminin çözümü;
  1. 2x + 10 = 3(x-3)
  2. 2x + 10 = 3x – 9
  3. 2x – 3x = -10 -9
  4. -x = -19
  5. x ={19} olur.

19.2=38 38+10=48 olacaktır.

 

BİRİNCİ DERECEDEN BİR

BİLİNMEYENLİ DENKLEMLER İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER SORULAR VE CEVAPLARI

 ve a0 olmak üzere ax +b=0 şeklindeki eşitliklere birinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan x sayısına denklemin kökü, bu kökün oluşturduğu kümeye çözüm kümesi denir.

ax+b=0 ise  sayısı denklemin köküdür.

Çözüm kümesi:

Ç= olur.

Örnekler:

  1. 6x +12 =0 denkemini çözüm kümesini bulunuz.

Çözüm:

6x+12=0  6x= -12

x= x=-2 Ç= olur.

2)-5x + 6 + x = 1 –x + 8 denkleminin çözüm kümesini bulunuz.

Çözüm:

-5x+ 6+ x =1 –x +8

-4x + 6 = -x + 9

-4x +x = 9-6

-3x=3

x= -1 Ç=

3) denkleminin çözüm kümesini bulunuz.

Çöm: denklemde paydası eşitlenir:

   

4) x-{2x-[x+1-(3x-5)]} = 3 ise x kaçtır?

Çözüm:

[x+1-3x+5]

[-2x+6]

{2x+2x-6}

x-4x+6 = 3

-3x =  x= 1 Sonuç: 1

5) 9(1-2x) – 5(2-5x) = 20 denkleminin çözüm kümesi nedir?

Çözüm:

9(1-2x) – 5(2-5x) = 20

9-18x-10+25x = 20

7x-1= 20

7x = 21

x = 3

Sonuç: 3

6) x 2 x 1

—– + —– = —– + 1—– denkleminin çözüm kümesi nedir?

3 5 5 3

Çözüm:

x 2 x 4

—– + —– = —– + —–

3 5 5 3

(5) (3) (3) (5)

5x+6 3x+20

——- = ——- = 5x + 6 = 3x+20

  1. 15

2x = 14  x = 7 Sonuç: 7

7) Kendisine  katı eklendiğinde 72 eden sayı kaçtır?

Çözüm:

 

8) 2x+5=1 ise “x” kaçtır?

Çözüm:

2x = -4

x = -2  Sonuç = {-2}

9) Toplamları 77 olan iki sayıdan birinin 3 katı, aynı sayının 4 katıyla toplamına eşittir.Bu Sayıların Küçük Olanı Kaçtır?

Çözüm:

3x+4x = 77

7x = 77

x = 7

3x = 33 Sonuç = {33}

  1.  Bu denklemdeki x’ in değerini bulunuz.

Çözüm:

x = 5 Sonuç = {5}

11)  “x” in değerini bulunuz.

Çözüm:

- 45 = 5x-35

5x = -10

x = -2

Sonuç = {-2}

12)  “x” in değerini bulunuz.

Çözüm:

3x-5 = -20

3x = -15

x = -5 Sonuç = {-5}

13)  denklemini  ve koşuluyla x’i bulunuz.

Çözüm

  

x=-1 fakat (x  1 ve x koşulundan dolayı

Ç=Ǿdir

14)  için x ’in değeri kaçtır?

Çözüm

  x=3 (x3 koşulundan dolayı )

Ç=Ǿdir

birinci dereceden bir bilinmeyenli denklemler çözümlü sorular, bir bilinmeyenli denklem soruları, 1 dereceden 1 bilinmeyenli denklemler çözümlü sorular, birinci dereceden iki bilinmeyenli denklemler çözümlü sorular, 1 bilinmeyenli denklem soruları, 1 dereceden 1 bilinmeyenli denklemler konu anlatımı, birinci dereceden bir bilinmeyenli denklemler örnekler, 1 dereceden 1 bilinmeyenli denklem soruları ve cevapları, 1 dereceden denklemler çözümlü sorular, 1 dereceden 1 bilinmeyenli denklem soruları, birinci dereceden bir bilinmeyenli denklemler konu anlatımı, 1 dereceden denklem soruları, birinci dereceden bir bilinmeyenli denklemler sorular, bir bilinmeyenli denklem örnekleri, birinci dereceden denklemler çözümlü sorular, bir bilinmeyenli denklemler sorular, bilinmeyenli denklem soruları, denklem soruları ve cevapları, 1 dereceden 2 bilinmeyenli denklemler çözümlü sorular, 1 dereceden 1 bilinmeyenli denklemler soruları
Sponsorlu Bağlantılar

dil ve anlatım 9.sınıf yeni kitabı tüm cevaplar

Sonraki Sayfa »

Atatürk’ün eğitime verdiği önem

Yorum Yaz

E-posta hesabınız yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Current ye@r *