Eski Mısırlıların Matematiğe Katkıları, Antik Mısırda Matematik İcatları ve Keşifleri Nelerdir

Sponsorlu Bağlantılar

Eski Mısırlıların Matematiğe Katkıları, Antik Mısırda Matematik İcatları ve Keşifleri Nelerdir

Eski Mısırlılarda matematik

Bilinen en eski sayma sistemlerinden biri, Eski Mısırlılar’a ait olanıdır. Eski Mısırlılar’ın kullandıkları resim yazısının (hiyeroglif) başlangıç tarihi, M.Ö. 3300 yılına kadar gider. Böylece, Mısırlılar yaklaşık 5300 yıl önce, milyona kadar olan sayıları kapsayan bir sistem geliştirmişlerdir. Eski Mısırlılar’a ait sayma sistemi, ilkçağ mağara insanının önceleri kullandığı sayma sisteminin gelişmiş şeklidir.

Eski Mısır aritmetiği hakkında bildiklerimiz, zamanımıza kadar intikal etmiş papirüs tomarlarından elde edilmektedir. Bugün bu papirüsler; bilim tarihinde M.Ö. 1900-1800 yılları için adlandırılan, kahun ve berlin papirüsleri ile, M.Ö. 1700-1600 yılları için adlandırılan Hiksoslar devrinden kalma Rhind ve Moskova matematik papirüsleridir. Mısır matematiği hakkındaki diğer kaynaklar, birkaç parşömen tomarı ile kil ve tahta tabletlere dayanmaktadır. Eski Mısır’da rakam ve sayılar bazı sembollerin yan yana gelmesiyle ortaya çıkıyordu. Bütün rakamlar, 7 değişik şeklin biraraya gelmesiyle ifade ediliyordu. Örneğin, 1 için yukardan aşağıya düşey bir çizgi, 10 için at nalı şekli, 100 için çengel işareti, 1000 için lotus çiçeği, 10000 için işaret parmağı, 100000 için tatlı su balığı, 1000000 için tatlı su balığı şekillerini kullanmışlardır ve yazım biçimi de sağdan sola doğru ifade ediliyordu.

Sayıları da, sembollerle göstererek bir sayı sistemi geliştirmişlerdir. Eski Mısırlılar 1′den 1 milyona kadar olan sayıları göstermek ve yazmak için değişik semboller kullanmışlardır. Örneğin, 9 sayısını ifade etmek için, 9 adet düşey çizgi; 90 sayısını ifade etmek için, 9 adet at nalı, kullanmak gerekiyordu.

Eski Mısırlılar, bu sembolleri, gerektiğinde tahta, ağaç ve taş üzerine de oymuşlardır. Bu rakamları, birkaç kez kullanarak, istenilen sayıları göstermişlerdir. Bu sistemde; gruplamalar onarlık olduğundan, sistem onluk sistemdir. Eski Mısır Sistemi, aşağıda belirtilen özelliklerinden dolayı, mağara insanının kullandığı sistemin geliştirilmiş şekliydi.

- Bir kümede, bulunan şeylerin toplam sayısı, sadece bir tek sembolle belirtilmiştir. Örneğin, 10 sayısının bir topuk kemiği sembolü ile belirtilmesi gibi.

- Diğer sayıları göstermek için, aynı semboller tekrarlanmıştır.

- Bu sistemde onluk gruplar esas alınmıştır. On düşey çizgi, bir topuk kemiği sembolünü, en topuk kemiği sembolü de, bir çengel sembolüne eş değerdir. Bu şekilde devam eder. Eski Mısırlılar sıfır kavramını da bilmiyorlardı ve sıfırı gösterecek bir işaret kullanmamışlardı. Fakat, sayıları çarpma ve çıkarma tablolarına, ehramların yapılış tarihinden itibaren sahip bulunuyorlardı.

Afet İnan, Eski Mısır Tarih ve Medeniyeti adlı eserinde şunları yazar:
“Mısır’da rakamların yazılışını çok eski zamanlardan itibaren bulmak mümkündür. IV. sülale zamanında (M.Ö. 2778 – 2413) Methe’nin mezarında bulunan yazılarda ölçü sistemlerinin mükemmel bir şekilde tespit edildiği de anlaşılıyor.”

Kaynaklar, XII. sülale zamanından (M.Ö. 2000-1787) kalma, bir takım aritmetik problemlerini açıklayan papirüsler ele geçtiğini, bunların bugün, Kahun, Moskova, Berlin ve Rhind papirüsleri diye adlandırıldığını belirtir. Afet İnan, adı geçen eserinde, bu konuda şu bilgileri de verir: “Bu papirüs metinlerinde, birçok matematik ve geometrik esaslar, ilmi bir şekilde konulmuştur. Bilhassa, Rhind papirüsü, Mısır matematiğinin bir abidesi sayılır. Bu türlü vesikalarda, ölçülerin ne gibi esaslara göre yapılacağı, örneklerle mevcuttur. Ehramlar, doğrudan doğruya bir geometrik problemin tatbik edilmiş şeklidir. Bunlardan başka, diğer yapılar da bu hesaplara göre yapılmıştır. Mısırlılar Pisagor teoreminin yalnız 3, 4, 5 özel halini yani kenarları 3, 4, 5 olan bir üçgenin, bir dik üçgen olduğunu biliyor ve bundan inşaat ve ölçü işlerinde faydalanıyorlardı.”

Hemen belirtmek gerekir ki, Eski Mısırlılar’ın hayatı, Nil Irmağı’nın yükselme ve alçalmasına bağlı olduğundan, bu durumu daima ölçmek ve kontrol etmek lazımdı. İşte bu hesaplar ve arazi ölçülerinden dolayı, Eski Mısır’da aritmetik ve geometrik ilimler büyük gelişme göstermiştir. Çünkü suyun yükselme ve alçalmasıyla, şahıslara ait arazi üzerindeki sınırlar bozuluyor ve bunları belirli ölçülere göre, yeniden tespit etmeleri gerekiyordu. Bu sebepten büyük bir itina ile gerekli ölçme ve hesaplamalar yapılmıştır.

Aydın Sayılı, Mısırlılar’da ve Mezopotamyalılar’da, Matematik, Astronomi ve Tıp adlı eserinde bu konuda şunları yazar: “Mısır rakamları, oldukça ilkel bir vasıf taşımalarına rağmen bunlar tarihte bilinen ilk ve en eski rakamlar arasında bulunmakla, büyük bir değer ve önem taşırlar. Çünkü bunlar belirli sembollerle ifade edilmesi, zihniyet ve düşüncesinin ilk örneklerinden, belki sadece Sümerliler istisna edilirse, en eskisini teşkil etmektedir

Bugün Kullanılan
sembollerle ifade

Mısır
Sembolleri
İfade edilen
cisim
1 Düşey bir çizgi
10 At nalı (topuk kemiği)
100 Çengel
1.000 Lotus çiçeği
(Mısır nilüfer çiçeği)
10.000 İşaret parmağı
100.000 Tatlı su balığı
(yavru kurbağa)
1.000.000 Şaşkın adam

 

 

          Sayıları da, bu sembollerle göstererek bir sayı sistemi geliştirmişlerdir. Eski Mısırlıların, 1 den 1.000.000 a kadar olan sayıları göstermek ve yazmak için kullandıkları semboller (şekiller) yukarıda gösterilmiştir.
Tablonun incelenmesinden anlaşılacağı gibi, 9 sayısını ifade etmek için, 9 ayrı şekil, 90 sayısını ifade edebilmek için, 9 adet başka bir şekil; 99 için 18 aynı şekil, 999 sayısı için ise, 27 ayrı şekil (sembol) kullanmak gerekli olmaktadır

Diğer sayıları göstermek için de, bu rakamları (sembolleri) yanyana veya gerekirse toplu olarak gruplar halinde yazarlardı. Bu sistemde, bir rakam dizisindeki rakamların, yer değiştirmesiyle, bu dizinin gösterdiği sayı değişmez. Bu durumda, verilen sembollerin, 123, 213. 312 sayılarından hangisini ifade ettiğini anlamak çok güçtür. Bu güçlüğü ortadan kaldırabilmek için; metin, konu ve karine yardımıyla sonuç çıkarma yoluna gidilirdi. Buna karşılık, bizim sistemimizde, 123. 213 ve 312 ifadeleri başka başka sayıları gösterir.
Eski Mısırlılar; bu sembolleri, gerektiğinde tahta, ağaç ve taş üzerine de oymuşlardır. Bu rakamları bir kaç kez kullanarak, istenilen sayıları göstermişlerdir. Bu sistemde; gruplamalar onarlık yapıldığından, sistem onluk sistemdir.
Eski Mısır sistemi, aşağıdaki belirtilen özelliklerinden dolayı, mağara insanının kullandığı sistemin geliştirilmiş şekli idi:
a) Bir kümede bulunan şeylerin toplam sayısı, sadece bir tek sembolle belirtilmiştir. Örneğin: 10 sayısının bir topuk kemiği sembolü ile belirtilmesi gibi.
b) Diğer sayıları göstermek için, aynı semboller tekrarlanmıştır.
c) Bu sistemde 10 luk gruplar esas alınmıştır. On düşey çizgi, bir topuk kemiği sembolünü, on topuk kemiği sembolü de, bir çengel sembolüne eş değerdir. Bu şekilde devam eder.
Konu hakkında bir fikir vermesi bakımından aşağıdaki tabloda on tabanlı sayıların, eski Mısır sayma düzeninde nasıl yapıldığı gösterilmiştir.

 

Onluk Sayma Düzeninde

Mısır Sayma Düzeninde

4

13

21

1982

2022

30300

Eski Mısırlılar sıfır kavramını da bilmiyorlardı ve sıfırı gösterecek bir işaret (sembol) kullanmamışlardı. Fakat sayıları, çarpma ve çıkarma tablolarına, ehramların yapılış tarihlerinden itibaren sahip bulunuyorlardı.  

Afet İnan Eski Mısır Tarih ve Medeniyeti adlı eserinde eski Mısır rakamları hakkında aynen şunları yazar:
“Mısır’da rakamların yazılışını çok eski zamanlardan itibaren bulmak mümkündür. IV. sülale zamanında (M.Ö. 2778-2413) Methe’in mezarında bulunan yazılarda ölçü sistemlerinin mükemmel bir şekilde tespit edildiği de anlaşılıyor.”
Kaynaklar, XII. sülale zamanından (M.Ö. 2000-1787) kalma, bir takım aritmetik problemlerini açıklayan papirüsler ele geçtiğini, bunların bugün, Kahun, Moskova, Berlin ve Rhind papirüsleri diye adlandırıldığını belirtir.
Afet İnan adı geçen eserinde, bu konuda şu bilgileri de verir:
“Bu papirüs metinlerinde, birçok aritmetik ve geometrik esaslar, ilmi bir şekilde konulmuştur. Bilhassa Rhind Papirüsü, Mısır matematiğinin başlıca bir abidesi sayılır. Bu türlü vesikalarda, ölçülerin ne gibi esaslara göre yapılacağı örneklerle mevcuttur. Ehramlar, doğrudan doğruya bir geometrik problemin tatbik edilmiş şeklidir. Bunlardan başka, diğer yapılar da bu hesaplara göre yapılmıştır…
Mısırlılar pytagoras Teoreminin yalnız 3, 4, 5 özel halini, yani kenarları 3, 4, 5 olan bir üçgenin, bir dik üçgen olduğunu biliyor ve bundan inşa ve ölçü işlerinde faydalanıyorlardı.”

Hemen belirtmek gerekir ki, Eski Mısırlıların hayatı, Nil Irmağının yükselme ve alçalmasına bağlı olduğundan, bu durumu daima ölçmek ve kontrol etmek lazımdı. İşte bu hesaplar ve arazi ölçülerinden dolayı, Eski Mısır’da aritmetik ve geometrik ilimler büyük gelişme göstermiştir. Çünkü suyun yükselme ve alçalmasıyla, şahıslara ait arazi üzerindeki sınırlar bozuluyor ve bunları belirli ölçülere göre, yeniden tespit etmeleri gerekiyordu. Bu sebepten büyük bir itina ile gerekli ölçme ve hesaplamalar yapılmıştır.
Aydın Sayılı, Mısırlılarda ve Mezopotamyalılarda, Matematik, Astronomi ve Tıp adlı eserinde bu konuda şunları yazar:
“Mısır rakamlarının oldukça ilkel bir vasıf taşımalarına rağmen, bunlar tarihte bilinen ilk ve en eski rakamlar arasında bulunmakla, büyük bir değer ve önem taşırlar. Çünkü bunlar belirli sembollerle ifade edilmesi, zihniyet ve düşüncesinin ilk örneklerinden, belki sadece Sümerliler istisna edilirse, en eskisini teşkil etmektedir.”

Eski Mısır’da Matematik

Mısır

Binlerce yıl önce, mühendislik alanında harikalar yaratan Mısırlılar, günümüzde bile insanların hayranlık dolu bakışlarını üzerlerinde toplamayı başarabiliyorlar. “Bu başarının sırrı acaba ne?” sorusuna cevap bulmak için yapılan araştırmalar gösteriyor ki, Mısırlılar’ın başarılarının arkasında sahip oldukları üstün matematik bilgisi yer alıyor.

Mısırlılar’ın matematik yetenekleri bugün hemen hemen biliniyor olsa da bu bilgilere nasıl ulaştıkları henüz çözülebilmiş değil. Eski Mısır’daki matematik ile ilgili bilgilerimiz, temelde Rhind (Şekil-3) ve Moskova papirüsleri olarak adlandırılan iki papirüse dayanmakta. Bu papirüsler sayesinde Mısırlılar’ın sayıları nasıl sembolize ettiklerini, dört işlemi nasıl gerçekleştirdiklerini şu anda biliyoruz.

Eski Mısır’da tıpkı günümüzdekine benzer bir şekilde 10’luk sayı sistemi kullanılıyordu ve her basamak tek bir sembol ile gösteriliyordu (Şekil-1). Örneğin Şekil-2’deki sembol dizisi, Eski Mısır’da 3244 sayısını temsil ediyordu. Bu sistem her ne kadar toplama ve çıkarmada çok iyi işlese de çarpma ve bölmede çok pratik olmamakta. Mısırlılar bu problemlerini, çarpma ve bölmeyi ikilik sayı sistemiyardımıyla toplama ve çıkarmaya dönüştürerek çözmüşler.

Astronomide, mimaride hatta tarımda bile matematiği kullanan Mısırlılar pi sayısından altın orana, karekök almaktan hacim hesaplamaya kadar birçok karmaşık matematiksel işlemi gerçekleştirebildiler. İşte bu yetenekleri sayesinde günleri hesaplayıp takvimi yarattılar, Nil nehrinin neden olduğu su baskınlarının dönemlerini belirleyip tarımlarını düzenlediler ve günümüzde bile eşi benzeri bulunmayan piramitleri inşaa ettiler. Her ne kadar Mısır hazineleri dendiğinde akla saf altından eşyalar gelse de, bu yazıda da gördüğümüz gibi asıl hazinelerinin paha biçilmez matematik bilgileri olduğu tartışılmaz bir gerçek.
Ayrıca Eski Mısır ve Çin matematikçilerinin kullandığı, bugün ise modern bilgisayarların çalışma mantığını oluşturan sayı sistemini anlatan bir video:

ancient-egyptian-mathematics ile ciscopedia

Eski Mısır’da Matematik, Antik Mısırlıların Matematik Bilim Dalına Katkıları , İcatları ve Keşifleri

Matematik ve Firavunlar
Mısır bilimciler, bulunmuş olan birkaç matematik papirüsü sayesinde antik Mısırlılar’ın hesaplama ve ölçümleme sistemleri hakkında bazı şeyler bilmektedirler. Bunlar, o zaman ortaya çıkan bazı sorunların nasıl çözüldüklerini göstermektedir.

En ünlülerinden biri, bugün British Museum’da sergilenen Rhind Matematik Papirüsü’dür. Bu sorunlara gelirsek, Mısır bilimcileri antik Mısırlılar’ın ağırlık, ölçü ve hacim hesaplamalarından ortaya çıkan farklı miktarlarla nasıl baş ettiklerini keşfetmişlerdir. Bunlar aynı zamanda açıları nasıl ayarladıklarını da göstermektedir.


Rhind Papirüsü


Bugünün modern dünyasında bir açıyı ölçmek için bir daireyi 360 dereceye tamamlayan iletkiler kullanmaktayız. Her derece 60 dakikaya ve her dakika da 60 saniyeye bölünmüştür. Antik Mısırlılar ise, açıları hesaplamak için oldukça farklı bir yöntem kullanıyorlardı. Bu, dik açılı bir üçgenin uzun kenar oranı üzerine dayanıyordu. Sonuç olarak her türlü açıyı eğim olarak hesaplayabiliyorlardı. Benzer bir sistem, otoyollarda tepe eğimini gösteren eski tip tabelalarda görülebilir. Bunlar bir tepenin eğimini l :6 gibi sayısal oranlarla gösterirlerdi. Bunun anlamı, ufuk çizgisinden dikeye doğru açının altı eşit parçaya bölünmüş olduğudur.

Aynı şekilde antik Mısır’da da bir eğimin açısı seked olarak bilinen tam bir oran sayısıyla ifade edilirdi.

Anlaşıldığı gibi, bu teknikler Marlborough Downs’daki antik İngilizler’de de gözlem yapmak için hayati önem taşımaktadır.

Antik Mısırlılar’ın kullandığı yöntemi anladığımızda, Büyük Piramit’detci 51 derece-51 dakika gibi “garip” eğim açılarının oluştuğu da ortaya çıkmaktadır. Bu, piramidin yüksekliği ve tabanı arasındaki sayısal orandan kaynaklanmaktadır. Bu da Büyük Piramit’de 7:11′dir. Bu, piramitler hakkında okuduğum hiçbir kitapta bulamadığım basit bir gerçektir ve bütün piramitler için geçerlidir. Piramitlerin sayısal anahtarı, tabanlarının yüksekliklerine olan orantısında yatmaktadır.

Pratik açıdan -ki, antik Mısırlılar kesinlikle pratik insanlardı- bu yöntem, piramit yapılırken doğru eğim açısının korunup korunmadığını sürekli olarak kontrol etmek için en kolay yoldu.

Ama burada cevaplanması gereken soru, Giza Platosu’ndaki piramitlerde antik Mısırlılar’ın neden farklı eğim açıları kullandıklarıdır. Farklı oranlar neden önemliydi? Formül oluşturulduktan sonra diğer hepsinin Büyük Piramit’le aynı oranla yapılması daha pratik ve kolay olmaz mıydı?

Mısır bilimciler, bizi firavunların her birinin kendi bireyselliklerini ifade etmek için bu yönteme başvurduklarına inandırabilir. Ama başka bir neden daha olabilir. Belki de kullandıkları oranlarda farklı sembolik bağlantılara yönelmek istiyorlardı.

7:11 oranına dayanan en azından bir piramit daha vardır. Giza’nın 160 kilometre güneyinde kalan Meidum’da bulunan bu piramit, Keops’un babası Senefru’ya adanmıştır. 5. Hanedanlık’dan Sahure’ye adanmış olan ve Abusir’de bulunan başka bir piramidin de eğim açısı 51 derece 42 dakika olarak hesaplanmıştır. Bu, Büyük Piramit’in açısının kesiridir ve aynı şekilde 7:11 oranını kullanmaktadır. Diğer birçok Mısır’da olduğu gibi Sahure Piramidi’nin de sorunu, dış yüzeyi çok fazla zarar gördüğü için doğru açının tam olarak hesaplanamamasıdır.

Kefren Piramidi’nin eğim açısı, M.Ö. 2278′den 2184′e kadar hüküm sürmüş olan 6. Hanedanlık’dan II. Pepi’ninkiyle aynıdır. Bu piramit şu anda kalıntı halindedir ama kalıntılardan eğim açısını hesaplamak mümkün olmuştur. Daha sonraki Mısır piramitlerinin yapısı, Giza Platosu’ndakilere göre daha basittir ve zaman içinde çok fazla zarar görmüşlerdir. Birçoğu şu anda moloz halindedir. Ama Kefren’deki eğim açısı (3:4:5 üçgenini temel almaktadır), Rhind Matematik Papirüsü’nde açığa kavuşmuştur. Buna göre, antik Mısırlılar’da bu oran iyi biliniyordu.

Antik Mısırlılar’ın 3:4:5 üçgenini bilmediklerini savunan Mısır bilimcilerinin hatırına hipotenüs uzunluğu (5) hiç verilmemiştir. Ama piramitleri de içine alan matematiksel sorunlar, yüksekliğin taban uzunluğuyla orantısı olarak açının “seked”i şeklinde açıklanmıştır. 3:4:5 üçgeninde seked, 3:4 orantısıdır. Ama hipotenüsün uzunluğu hiç verilmezken, bunun nedeni Mısırlılar’ın bu uzunlukla hiç ilgilenmemiş olmalarıdır.

Büyük Piramit veya Kefren Piramidi gibi kesin ölçüm becerileri gerektiren muhteşem anıtları tasarlayabilen ve inşa edebilen insanların kullandıkları üçgenlerin hipotenüs uzunluklarıyla ilgilenmediklerine inanabilir miyiz? Ölçümlerinde tutarlılık arayan her insan, sayı, biçim ve geometri arayışlarında her türlü uzunluk ölçülerini elbette ki hesaplayacaklardır. Bu, çalışma yöntemlerinin temelidir. O halde, üçüncü kenarın uzunluğunu gizliden gizliye bildiklerine dayanarak sadece 3:4 oranını kullanmaya devam edeceğiz.

Giza piramitlerinde kullanılan taban-yükseklik orantısı, antik Mısırlılar tarafından kesinlikle biliniyordu. Birçok matematik metninde verilen örneklerde bu açıktır. Tabii ki piramitlerde kullanılan oranların keyfi olarak seçilmiş olması da mümkündür. Ancak bu özellikler, Mısırlılar’ın sanatsal ifade biçimlerinin hepsinde ortaya çıkmakta ve sayı sembolizmine verdikleri önemi vurgulamaktadır.

Bu oranların belli dini kavramları ifade eden anlamlar taşımaları yüksek olasılıktır. Diğer bir deyişle, Giza’daki yapıların tamamı kasıtlı bir şekilde ruhsal bir konuyu ifade etmek için yapılmıştı. Bu, piramit tasarımcılarının üç piramidin her birinde neden farklı eğim açılarını seçtiklerini açıklamaktadır.

The Orion Mystery’de Bauval ve Gilbert, Giza piramitlerini Orion takımyıldızına ve özellikle Orion kuşağındaki yıldızlara bağlayan kanıtlar göstermişlerdir. Bu takımyıldız aynı zamanda İsis ve Osiris mitinde de karşımıza çıkmaktadır ve daha önce de söylediğimiz gibi, bu piramitler üç temel ilah grubunu temsil etmek için yapılmış da olabilir; Osiris, İsis ve Horus’u.

Sponsorlu Bağlantılar

Türkiye’nin en büyük platosu ismi nedir, en yüksek plato hangisidir

Sonraki Sayfa »

Bölme işlemi ile ilgili problemler, sorular ve cevapları 5. sınıf

Yorum Yaz

E-posta hesabınız yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Current ye@r *