İlginç matematik soruları, matematikle ilgili komik zeka problemleri

131 1
Sponsorlu Bağlantılar

İlginç matematik soruları, matematikle ilgili komik zeka problemleri, ilginç zeka problemleri ve cevapları, matematik hakkında ilginç ve komik sorular, matematik ile ilgili ilginç zeka soruları

Zeka Soruları, IQ Testleri, İlginç Matematik Problermleri ve Gizemli Sayılar

Matematik Dünyası

İlginç matematik problemleri, sayıların gizemi

Soru 1:

Gizemli sayılar ve ilginç matematik problemleri

Dünyayı saran halat
Sizce dünyanın çevresini sarmak için kaç kilometre halata ihtiyacınız var? Pekiyi bu halatın boyunu 1 metre uzatırsak sizce bir tavşan toprağı eşmeden ve halata değmeden altından geçebilir mi? Peki ya siz. 

Cevap 1: 

 Dünyanın Etrafına Sarılmış Halat

  Dünyanın etrafını ekvatorda çepeçevre saran bir halat olduğunu hayal edin. Halatın uzunluğu 40 bin kilometre olsun. Halatın dünyayı sıkı sıkıya sardığını ve halatla dünya arasında hiç boşluk olmadığını düşünün.

Soru
Eğer halatın boyunu 1 metre (evet 1 metre) uzatırsak halat bir miktar gevşeyecektir. Diyelimki bu gevşeme tüm ekvator boyunca eşit olarak gerçekleşti ve yukarıdaki şekilde gösterildiği gibi halatla dünya arasında bir boşluk oluştu. Sizce bu boşluktan yani halatın altından bir tavşan geçebilir mi?

Cevap
Kısa cevap evet ama biz hep birlikte ne kadar boşluk oluşacağını bir hesaplayalım.

Geometrik olarak baktığımızda aşağıdaki şeklin oluştuğunu görürüz.

Başlangıçta halatın boyu:

1 metre eklediğimizde halatın boyu:

R ile r arasındaki farkı bulmak için yukarıdaki iki denklemi birleştirerek aşağıdaki denklemi elde edebiliriz ve bu durumda sonuç yaklaşık 16 cm çıkar.

İki yarıçap arasında 16 cm fark var. 16 cm bir tavşanın altından geçmesi için yeterli.

Sizce bu ilginç matematik ve geometri sorusunun cevabı şaşırtıcı değil mi?

Soru 2:

1089 Sayısının Gizemi
Hangi sayıyı seçerseniz seçin bazı işlemlerden sonra sonuç 1089 çıkıyor. Deneyin

cevap 2:

  1089 Sayısının Gizemi

Rakamları farkli üç basamaklı bir sayı seçin. Örneğin:

825

Şimdi bu sayının tersini alalım ve büyük olandan küçük olanı çıkaralım.

825 – 528 = 297

Şimdi çıkan sonucun tersiyle kendisini toplayalım.

297 +792 =1089

Sizde farklı sayılarla aynı işlemleri yaparak 1089 sayısını elde edebilirsiniz.

soru 3:

Sonuç Her Zaman 1
Seçtiğiniz sayıya belirli işlemleri uyguladığınızda sonuç her zaman 1 çıkıyor.

Cevap 3:

    Gizemli İşlemler

Aklınızdan herhangi bir pozitif sayı tutun. Bu sayıya aşağıdaki işlemleri sürekli uygulayacağız.

Sonuç tek ise:

3 ile çarp 1 ekle

Sonuç çift ise:

2’ye böl

En sonunda 1 sayısına ulaşacaksınız.

Örneğin sayımız 5 olsun.

5 * 3 + 1 = 16

16 / 2 = 8

8 / 2 = 4

4 / 2 = 2

2 / 2 = 1

Yeterince sabırlı iseniz daha büyük sayılar için de aynı kuralın geçerli olduğunu göreceksiniz.

soru 4:

 

6174’ün sonsuz döngüsü
Hangi sayı ile başlarsanız başlayın 6174 sonsuz döngüsüne düşeceksiniz.

Cevap 4:

  Gizemli 6174

Sonucun her zaman 6174 çıktığı ilginç bir matematik oyunu.

Dört basamaklı bir sayı seçin. Ancak rakamları aynı olması. Örneğin:

 4563

Şİmdi bu sayının içerisindeki rakamları en büyük ve en küçük olacak şekilde sıralayım ve büyük olandan küçük olanı çıkaralım.

6543 – 3456 = 3087

Çıkan sonuca aynı işlemi tekrar edelim.

8730 – 378 = 8352

Aynı şekilde devam edelim.

8532 – 2358 = 6174

6174 için aynı işlemlere devam edersek sonuç çok şaşırtıcı:

7641 – 1467 = 6174

6174 sayısına ulaştığımızda sonsuz bir döngüye giriyoruz.

Siz işlemleri seçeceğiniz herhangi bir sayı için tekrarlayabilirsiniz. Sonuç değişmeyecektir.

soru 5:

Basketbol Turnuvası 
Bir turnuvada birincinin belirlenmesi için kaç maç yapılması gerektiğini nasıl belirlesiniz.

Cevap 5:

    Basketbol Turnuvası

13 takımın katıldığı bir basketbol turnuvası düşünün. Kurallar gereği bir maç kaybeden takım eleniyor olsun. Sizce basketbol turnuvasında birincinin belirlenebilmesi için kaç maç yapılması gerekir?

İlk turda 12 takım eşleşecek ve altı maç yapacaktır. Bunun sonucunda altı takım bir üst tura geçecektir. 13. takım bay çekeçek ve bir üst tura yedinci takım olarak çıkacaktır.

İkinci turdaki yedi takımdan altısı eşleşecek ve yapılacak üç maç sonunda basketbol turnuvasında bir üst tura çıkacaklar takımlar belirlenecektir. Takım sayısı tek olduğu için bu turda da takımlardan biri bay çekip üçüncü tura çıkan dördüncü takım olacaktır.

Üçüncü turda (yarı finalde) dört takım aralarında eşleşip, iki maç yapacak ve finalistleri belirleyecektir.

Final maçında da basketbol turnuvasının birincisi belirlenecektir.

Baştan toplarsak birincinin belirlenmesi için yapılması gereken maç sayısı:

6 + 3 + 2 +1 = 12

 Peki bu tarz bir problemin başka bir çözüm yöntemi olabilir mi?

Biraz tersten düşünelim. 13 takımdan sadece 1 tanesi birinci olacağına göre kaç tanesinin elenmesi gerekir. Cevabınız 12. Herbir takımın elenmesi için kaybedeceği bir maça ihtiyaç olduğuna ve her maçta mutlaka bir kaybeden olduğuna göre 12 takımın elenmesi için kaç maça ihtiyaç vardır? Cevabınız 12 değil mi?

Bu biraz önce bulduğumuz sonuçla aynı ama çok daha basit. Siz başka sayılarla da bu kuralı deneyebilirsiniz. Şu anda neredeyse tamamımızın zor olan yolu seçmesinin nedeni eğitim sistemimizle ve beyinlerimizin şartlandırılmış olmasıyla ilgili.

Hayat süprizlerle doludur.

soru 6:

Zeka Soruları: Bu soruların bir kısmı ünlü bilimadamı Einstein tarafından sorulmuş. Aşağıdaki linkelere tıklayarak zeka sorularına ulaşabilirsiniz.

ÇAKMAKTAŞLAR
Zeka Sorusu


Zeka Sorusu Kuralları

Anne baba ve iki çocuktan oluşan bir aile bir tünelin başına gelmişler ve karşıya geçmeleri gerekiyor.

1. Tüm aile fertleri karanlıktan çok kurkuyor ve bu nedenle geçişler sırasında yanlarında mutlaka meşale olması gerekiyor.

2. Meşale sadece 12 dakika süreyle yanıyor dolayısla tüm fertlerin geçişi 12 (Evet oniki) dakikada tamamlanmak zorunda.

3. Tünelden aynı anda sadece iki kişi geçebilir.

4. Baba 1 dakikada karşıya geçebiliyor.

5. Anne 2 dakikada karşıya geçebiliyor.

6. Erkek çocuk 4 dakikada karşıya geçebiliyor.

7. Kız çocuk 5 dakikada karşıya geçebiliyor.

8. Tüm bireyler için gidiş ve dönüşler aynı sürede tamamlanıyor.

Bu şartlar altında aileyi karşı tarafa geçirebilecek misiniz bakalım….

Cevap 6:

Önce anne ve baba karşıya geçer.

2 dakika

Baba geri döner.

3 dakika

Kız ve erkek çocuk birlikte karşıya geçer.

8 dakika

Anne geri döner.

10 dakika

Baba ve anne karşıya geçer.

12 dakika

Aile karşıya geçmiş olur.

soru 7:

 

ÜÇ MAYMUN ve ÜÇ İNSAN
Zeka Sorusu
 


Zeka Sorusunun Kuralları

Üç maymun ve üç insandan oluşan bu ilginç grubumuzun nehrin karşısına geçmesi gerekiyor.

1. Maymunların sayısı hiçbir zaman insanların sayısından fazla olmamalıdır. Maymunlar sayıları fazla olunca insanlara saldırmaktadır.

2. Teknede aynı anda sadece iki kişi bulunabilir.

3. Tekneyi ilerletmek için en az bir kişiye ihtiyaç vardır. Tekne üzerinde insan veya maymun olmadan geri dönemez.

Bakalım maymunları ve insanları karşıya geçirebilecek misiniz?

Cevap 7:

Önce anne ve baba karşıya geçer.

2 dakika

Baba geri döner.

3 dakika

Kız ve erkek çocuk birlikte karşıya geçer.

8 dakika

Anne geri döner.

10 dakika

Baba ve anne karşıya geçer.

12 dakika

Aile karşıya geçmiş olur.

soru 8:

SATRANÇ SORUSU
Zeka Sorusu

Satranç Sorusu

Sekiz adet veziri satranç tahtası üzerine öyle yerleştirinki hiçbiri birbirini tehdit etmesin.Kolay gibi görünebilir ama çok kolay bir satranç problemi değil. Biz çözümlerden bir tanesini yayınlayacağız ama bu stranç probleminin 12 adet farklı çözümü olduğunu da bilmenizde fayda var. 

cevap 8:

İşte 8 adet vezir satranç tahtası üzerinde birbirini tehdit etmeyecek şekilde sıralanmış.

Bu satranç probleminin çözümü tek değil. 12 adet farklı çözüm olabilir.

İlginç matematik soruları ve cevapları

İLGİNÇ SORULAR
1 ) Bir odadasınız. Odada 3 santimetre yarıçapında, 8 santimetre derinliğinde daire biçiminde bir delik var. Deliğe pinpon topu kaçmış. Delik dar, elinizi sokamıyorsunuz. Yanınızda hiçbir aygıt yok. Topu nasıl alırsınız?

Cevap. Küçük ihtiyacımızın gelmesini bekleriz! Deliğe ihtiyacımızı yaptığımızda top yükselir!

2 ) Dedektif, yardımcısına:

Bu akşam saat 8’de benim evime gel, ama bana geleceğini kimseye söyleme ve seni eve girip çıkarken kimse görmesin, diyor.

Yardımcı söylenen saatte dedektifin evine gidiyor. Evde kimse yok. Kapının altına şöyle bir not düşüyor:

“Dediğiniz saatte geldim. Evde kimse yoktu. Geleceğimi kimseye söylemedim. Eve girip çıkarken kimseye görünmedim. Saygılarımla”

Dedektif ertesi gün yardımcısını işten kovuyor. Neden?

Cevap. Yardımcı daha evden çıkmadan “eve girip çıkarken kimseye görünmedim” diyor!

3 ) Sarışın, genç ve güzel kadın tek yönlü bir sokaktan ters yöne doğru gidiyor. Kadının arabasının sigortasının zamanı geçmiş, vergisi ödenmemiş, ışıkları ayarsız, kaportası boyasız, rot ayarı bozulmuş, balataları gevşemiş, sinyal lambaları çalışmıyor, şanzuman gıcırdıyor, egzos borusu zehirli duman üfürüyor. Ayrıca kadının ehliyeti yok. Bütün bunlar yetmezmiş gibi kadın sarhoş. Ve bunlar trafik polisinin gözü önünde oluyor, polis her şeyin ayrımında. Ama polis kadını durdurmuyor. Neden?

Cevap. Kadın arabasına binmemiş, yürüyor da ondan!

4 ) Ali Baba’nın bir çiftliği varmış… Hayvanlarının ikisi dışında hepsi tavukmuş, ikisi dışında hepsi inekmiş, ikisi dışında hepsi koyunmuş. Ali Baba’nın çiftliğinde kaç hayvan vardır?
Cevap. Üç! Bir tavuk, bir inek ve bir koyun!

5 ) Bir İskoç şakası: “İskoçya’da oturan bir İskoç İngiltere’ye yerleştiği zaman her iki ülkenin de zekâ ortalaması artar!”
Bu İskoç şakası bir mantığa oturtulabilir mi?

Cevap. Evet! En aptal İskoç, en akıllı İngiliz’den daha akıllıdır ve ancak İskoçların en aptalı İngiltere’ye yerleşmek isteyebilir!

6 ) Bir yarışta ikincinin önüne geçersen kaçıncı olursun?

Cevap. ikinci elbette!

7 ) İki çocuk aynı gün, aynı saat, aynı anda, aynı anadan (ve babadan) doğmuşlar. Ama ikiz değiller. Bu nasıl oluyor?

Cevap. Üçüzlerin ikisiymişler de ondan!..

8 ) Yargıç karar verecek. Mahkeme tutanaklarından şu bilgiler çıkıyor:
Eğer A suçsuzsa, hem B hem C suçlu.

Ya B ya C suçsuz .

Ya A suçsuz ya B suçlu .

Kim ya da kimler suçlu, kim ya da kimler suçsuz?

Cevap. Eğer A suçsuzsa, birinci önermeye göre hem B hem C suçludur. Ama bu sonuç ikinci önermeyle çelişiyor. Demek ki A suçlu. A suçlu olduğundan, üçüncü önermeye göre B suçlu. B suçlu olduğundan, ikinci önermeye göre C suçsuz.

Sonuç olarak, A ve B’nin suçlu, C’nin suçsuz olduğunu bulduk.

9 ) Doktoruz size 3 hap verir ve bunları yarımşar saat arayla almanızı tavsiye ederse, ilaçların tamamını bitirmeniz ne kadar sürer?

Cevap. İlaçlar 1 saat içinde biter. Aceleyle işlem yaptıysanız, 3 ile yarım saati çarpıp 1,5 saat derseniz sorunun tuzağına düşersiniz. Biraz düşünmeniz yeterli. Diyelim ki ilk hapı saat 11.00’da aldınız. İkinci hapı 11.30’da, üçüncü hapı da 12.00’da almanız gerekir.

10 ) Bazı aylar 30, bazıları 31 gün çeker, kaç ayda 28 gün vardır?
Cevap. Hepsinde, tüm aylarda 28 gün vardır.

11 ) Aklınızdan bir sayı tutun! Bu sayıya ondan bir sonraki sayıyı ekleyin! Sonuca 15 ilave edin.! Çıkan sayıyı ikiye bölüp sonuçtan, ilk başta tuttuğunuz sayıyı çıkarın! Kalan daima 8’dir. Peki ama nasıl?

Cevap. Sayı A ise, bir sonraki sayı A+1 ‘dir.

A+A+1=2A+1 eder.

Buna 15 eklenirse 2A+1+15=2A+16 olur.

Bunun yarısı (A+8) ‘dir. Bu sayıdan A’yı çıkarırsanız kalan 8 olur.

12 ) Büyük bir tencereye 1 yumurta koyuyorum ve 5 dakikada pişiyor, 5 yumurta koydum ve bu yumurtalar kaç dakikada pişer.

Cevap: 5 dakika

13 ) Bir iş adamı 56 katlı gökdelenin 21’inci katında çalışır. Ama her gün 19’uncu kata kadar asansorle çıkar öbür 2 kat için merdivenleri kullanır. Bunun nedeni ne olabilir? (tüm asansörler çalışıyor, spor yapmak içinde değil)

Cevap: adamın boyu asansörün 19. düğmesine ancak yetişdiği içindir…

Dünyanın En İlginç Matematik Sorusu ve Cevabı..

Matematik sinav sorusu / gercektir. sonuna kadar okuyun.
Soru, Istanbul Üniversitesi Isletme Fakültesinin Isletme Matematigi kitabindan gerçek bir alintidir. Hiç dokunulmadan ve yorumsuz sekliyle verilmistir:
Kitap Adi : Isletme Matematigi
Yazar : Prof. Dr. Müh. Yilmaz Tulunay
Sayfa: 173 Soru : Amerika’ya lisansüstü çalismalar yapmak üzere giden Mehmet, iki kiz arkadas edinmistir. Bunlar Mary ve Nancy’dir. Mehmet’e
göre;
a-) Mary olgun bir kizdir ve klasiklerden zevk almaktadir. Böyle bir yerde
onunla 3 saat birlikte olmak 12 dolara mal olmaktadir. Diger taraftan
Nancy daha çok popüler eglenceleri yeglemektedir. Onunla böyle bir yerde 3
saat birlikte olmanin maliyeti de 8 dolardir.
b-) Mehmet’in bütçesi gönül islerine ancak ayda 48 dolar ayirmasina olanak vermektedir.
Ayrica, derslerinin ve
çalisma kosullarinin agir olusundan dolayi, kiz
arkadaslarina en fazla ayda 18 saatliksüre ve 40.000 kalorilik enerji ayirabilmektedir.
c-) Mary ile her bulusmasinda 5.000 kalori enerji harcayan Mehmet,Nancy
için bunun iki katini harcamaktadir. Eger Mehmet’in Mary ile bulusmaktan
bekledigi mutlulugu 6 birim ve Nancy ile bulusmaktan bekledigi mutlulugun
da 5 birim oldugunu biliyorsak, mutlulugunu maksimize etmek isteyen Mehmet’in sosyal yasamini nasil planlamasi gerekecektir?

Cevabı:

a-) Bi kere bu Mehmet ****sinde iki hatuna ayri ayri zaman harcayacak g.. de, para da yok, sikarrrr.
Ayrica dünya piyasalarinda saati 100 dolardan
açilip minimum 50 dolara kadar düsen tarifeler göz önüne alindiginda, 3 saati 12 dolarlik yada 3 saati 8 dolarlik karilardan hayir gelmez.
Muhtemelen Mary 68, Nancy 79 yasindadir ve ikisinin de bugüne kadar yattiklarinin haddi hesabi yoktur.Bu durumda Mehmet’in hem vakit darligi,
hem kadinlarin hali, hem de para yoklugu sebepleriyle bu iki o….. grup sexi yapmasi gerekir.
b) Mehmet’in bütçesi (bu gönül isi tabirini ben anlamadim)sevismek için
ayda 48 dolara yetiyorsa zaten bu o…..çocugunun mastu….. yapmasi daha uygun olur. Böylelikle iki ay para biriktirip bu çuvallarin yerine dogru
dürüst bir kariya ziplar ve ayirdigi 40.000 kaloriyi hakkiyla harcar.
Ama siz bu cevabi kabul etmeyeceginiz için söyle cevap verelim; Mehmetin bütçesi 48 dolara yettigi için ancak grup sex yapilacagindan pazarlikla
miktar iskontosu alinir ve bütçe rahatlatilir.Böylelikle ayda ayirdigi
saati 3 saate bölersek 6 kez yapmis olur ve her sevismede 40.000/6= 6700
(yaklasik) kalori harcar. Bu hayvan bir seferde kesintisiz 3 saat ziplayabiliyorsa zaten Amerikada kalmasi ve buralara dönmemesi hepimiz için
hayirli olur.
c-) Mehmet Mary ile her bulusmasinda 5.000 kalori harciyorsa yukaridaki hesaba göre Nancy’ye sadece 6.700 – 5.000 = 1.700 kalori kalir ki bu da
Nancy gibi falafos bir motoru sadece gidiklar. Bu durumda birinden 6,digerinden 5 birim zevk alan Mehmet’in mutlulugunu maksimize etmesi için
kendisini de birilerine d..dürmesi gerekir. Sonuç olarak bu ise alisan Mehmet’in bundan sonraki sosyal yasantisini kasarli bir ibine olarak
planlamasi gerekir. Bu sayede ayda 48 dolar tasarruf sagladigi gibi üste para da kazanarak bütçeyi de düzeltir.

Komik Matematik Soruları

1. A kentinden yola çikan bir çift katli otobüs, B kentine vardiginda
tek katli olmustur. Ayni anda Ç kentinin F Ilçesine bagli K
nahiyesinden yola çikan bir midibüs ters yöne girerek hiz sinirini
geçmis ve P ülkesine gitmistir. Her iki aracin saatte 90 kiloamper
hizla yol aldigi varsayilirsa, iki aracin T sarampolünde
karsilasmalari ne zaman gerçeklesir?
a) 2001 sonbahari
b) 2001 ikindi vakti
c) 2013 milenyumu
d) 2008 bir pazar sabahi
e) Hepsi

2. Birbirini birkaç kez kesen iki dogrunun arasinda mutlak bir gerilim
vardir ve bunlari baristirarak üçgen olusturmak isteyen üçüncü
dogrunun çabalari bosunadir. Matematikte bu kurala ne denir?
a) Hakinen metodu
b) Prenses Stephanie Prensibi
c) Tugrul Abi Yöntemi
d) Burusma Yöntemi
e) Hepsinden biraz

3. Bir siniftaki 32 ögrenciden 18′I hem Ingilizce hem Almanca, 12’si
hem Fransizca hem Almanca, 6’si ise hem Italyanca hem de yine
Italyanca ve Ispanyolca bilmektedir. Bazen kimin ne söyledigi
anlasilamamaktadir. Bir de su var, bu sinif hangi ülkededir ki kuzum?
a) Dingiltere
b) Ispiyonya
c) Ithalya
d) Ütopya
e) Hollanda

4. Bir üçgenin dik kösesi o kadar uzundur ki, bu üçgen zaman zaman
prizma, bazen de besgen gibi görünmektedir. Buna geometride ne denir?
a. Hipoteneffüs
b. Müthis Yanilsama
c. Yalan
d. Hipopotem
e. Hepsi

5. Bir göle dört bir yandan maya çalinmaktadir. O gölün sulak bir
arazide yer aldigi düsünülürse ve çalinan mayalarin toplam agirliginin
340 hektogram oldugu da hesaba katilirsa gölün derinligi ne kadardir?
a. Dört basketbolcu boyu
b. Dört basketbolcu + bir cüce
boyu
c. 40 dekametre
d. Göl Maya tutmaz
e. Hepbiri

6. A kenti ile E kenti arasinda dört harf vardir. A kentinden yola
çikan bir kamyonet, L kentine vardiginda TIR olmaktadir. Her iki kent
arasindaki
uzaklik dekametrelerle ifade edildigine göre F kenti
neresidir?
a. Bolu
b. Inebolu
c. Safranbolu
d. Bursabolu
e. Kütahya

7. Mahmut ile Nedim’in yas toplami 303′tür. Mahmut henüz ilkokula
giden küçük bir çocuk, tosun bir yavrucak olduguna göre Nedim’in
kaplumbaga olma
olasiligi kaçtir.
a. 100 hektar
b. Bir miktar
c. Bilinmez
d. Yoktur
e. Hiç yoktan iyidir.

8. Bir durusma salonuna bes kapidan tanik girmektedir. Bunlardan bir
kisminin bir baska kapidan çikip gittigi ve bir kisminin ise yalanci
tanik oldugu düsünülürse kalan iki tanigin, saniga olan uzakliklari ne
kadardir?
a. 30 dekametre
b. 815 milipi
c. 40 haramitre
d. 102 hektomirmiç
e. Hepbiri
9. Eskenar üçgen nedir?
a. Bir üçgenin dörtgen olmaya çalismasidir.
b. Kenarlarin esitligine denir.
c. 80 derece limon kolonyasi dökülmüs üçgendir
d. Kenarlarin kübikligi sözkonusu olur
e. Hepsi

10. Sir Ernest Waikiki (1764-1836) Iskoçyali bir
matematikçidir. Bir bilimadinin kesfettigi ölçünün adi
nedir?
a. Pütükare
b. Megakuku
c. Ikilitre
d. Hektokukla
e. Yedi cüce
f. Hepbiri

11. Bir köprüden bir essek dört dakikada geçmektedir. Köprü
yikildiginda ayni essek, agagidaki çaglayana yedi dakikada
düsmektedir. Esegin sahibi,öldü sandigi esegine iki buçuk yil sonra bir
reklam filminin çekiminde rastlamaktadir. Buna göre, köprünün
bagladigi iki belde asagidakilerden hangisidir.?
a. Gudikköy-Sahbaz Yaylasi
b. Gudikköy – Pa ovasi
c. Kübikköy – Sahbaz Yaylasi
d. Titizköy – Sahmat Vadisi
e. Hepbiri

12. Bir sinavda 140 soru sorulmustur. Bu sorulardan en az 100′ünün
yaniti “c” sikkidir. “c” sikkina böylesine yüklenmesine trigonametride
ne denmistir?
a. Öklitusomania
b. Sorulari Cevdet Hoca hazirlamistir.
c. Ne var, nesi varmis c sikkinin
d. Hadi ordan
e. Yapmayin beyler, hiçbiri

13. Bir genç kiza günde ortalama 27 kisi evlenme teklif etmektedir.
Bunlarin bir kismi zaten evli oldugu düsünülürse, amaçlarinin gönül
eglendirmek oldugu açiktir. Normal sartlarda bir gönülün eglenmesi 48
saat sürdügüne göre, kizin abisinin günde ortalama 10 adam dövmesiyle
bir yil sonunda kaç bekar adam dayak yememis olur?
a. 42 adam
b. 570 adam
c. Birkaç iyi adam
d. Sadece, dünyayi kurtaran adam
e. Hepsi

14. Matematikte 3.14 sayisina “pi” denir. Ilk bakista vasifsiz gibi
görünen 7,98 sayisina ise ne denir?
a. Tül Sayisi
b. Hin sayisi
c. Bön sayisi
d. Hirs sayisi
e. Karekök (Yaniltma SEÇENEGI))

matematik ile ilgili ilginc sorularmatematik ile ilgili sorularmatematik ile ilgili zeka sorulari, matematikle ilgili sorular, matematikle ilgili zeka sorulari

Sponsorlu Bağlantılar

1 Yorum --> "İlginç matematik soruları, matematikle ilgili komik zeka problemleri"

Yorum Yaz

E-posta hesabınız yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Şu HTML etiketlerini ve özelliklerini kullanabilirsiniz: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Current ye@r *